首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Abstract

Let {Xn, n ? 1} be a sequence of negatively superadditive dependent (NSD, in short) random variables and {bni, 1 ? i ? n, n ? 1} be an array of real numbers. In this article, we study the strong law of large numbers for the weighted sums ∑ni = 1bniXi without identical distribution. We present some sufficient conditions to prove the strong law of large numbers. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for NSD random variables is obtained. In addition, the complete convergence for the weighted sums of NSD random variables is established. Our results generalize and improve some corresponding ones for independent random variables and negatively associated random variables.  相似文献   

2.
Let {Xn, n ? 1} be a sequence of asymptotically almost negatively associated (AANA, for short) random variables which is stochastically dominated by a random variable X, and {dni, 1 ? i ? n, n ? 1} be a sequence of real function, which is defined on a compact set E. Under some suitable conditions, we investigate some convergence properties for weighted sums of AANA random variables, especially the Lp convergence and the complete convergence. As an application, the Marcinkiewicz–Zygmund-type strong law of large numbers for AANA random variables is obtained.  相似文献   

3.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

4.
Let X1 be a strictly stationary multiple time series with values in Rd and with a common density f. Let X1,.,.,Xn, be n consecutive observations of X1. Let k = kn, be a sequence of positive integers, and let Hni be the distance from Xi to its kth nearest neighbour among Xj, j i. The multivariate variable-kernel estimate fn, of f is defined by where K is a given density. The complete convergence of fn, to f on compact sets is established for time series satisfying a dependence condition (referred to as the strong mixing condition in the locally transitive sense) weaker than the strong mixing condition. Appropriate choices of k are explicitly given. The results apply to autoregressive processes and bilinear time-series models.  相似文献   

5.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

6.
7.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

8.
Let X1, X2,… be a sequence of independent random variables with distribution functions F1, where 1 ≤ in, and for each n ≥ 1 let X1,n ≤… ≤ Xn,n denote the order statistics of the first n random variables. Under suitable hypotheses about the F1, we characterize the limit distribution functions H(x) for which P(Xk,n ? anx + bn) → H(x), where an > 0 and bn are real constants. We consider the cases where κ = κ(n) satisfies √n {κ(n)/n — λ} → 0 and √n {κ(n)/n — λ} → ∞ separately.  相似文献   

9.
Let X1,., Xn, be i.i.d. random variables with distribution function F, and let Y1,.,.,Yn be i.i.d. with distribution function G. For i = 1, 2,.,., n set δi, = 1 if Xi ≤ Yi, and 0 otherwise, and Xi, = min{Xi, Ki}. A kernel-type density estimate of f, the density function of F w.r.t. Lebesgue measure on the Borel o-field, based on the censored data (δi, Xi), i = 1,.,.,n, is considered. Weak and strong uniform consistency properties over the whole real line are studied. Rates of convergence results are established under higher-order differentiability assumption on f. A procedure for relaxing such assumptions is also proposed.  相似文献   

10.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

11.
The probability density function (pdf) of a two parameter exponential distribution is given by f(x; p, s?) =s?-1 exp {-(x - ρ)/s?} for x≥ρ and 0 elsewhere, where 0 < ρ < ∞ and 0 < s?∞. Suppose we have k independent random samples where the ith sample is drawn from the ith population having the pdf f(x; ρi, s?i), 0 < ρi < ∞, 0 < s?i < s?i < and f(x; ρ, s?) is as given above. Let Xi1 < Xi2 <… < Xiri denote the first ri order statistics in a random sample of size ni, drawn from the ith population with pdf f(x; ρi, s?i), i = 1, 2,…, k. In this paper we show that the well known tests of hypotheses about the parameters ρi, s?i, i = 1, 2,…, k based on the above observations are asymptotically optimal in the sense of Bahadur efficiency. Our results are similar to those for normal distributions.  相似文献   

12.
Let {X, Xn; n ≥ 1} be a sequence of real-valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = (ank; 1 ≤ kn, n ≥ 1); ank, ? R and supn, k |an,k| < ∞}. Set Sn( A ) = ∑nk=1an, kXk for A ? D and n ≥ 1. This paper is devoted to determining conditions whereby E{supn ≥ 1, |Sn( A )|/n1/r}p < ∞ or E{supn ≥ 2 |Sn( A )|/2n log n)1/2}p < ∞ for every A ? D. This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).  相似文献   

13.
14.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

15.
16.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

17.
Assume that there are two types of insurance contracts in an insurance company, and the ith related claims are denoted by {Xij, j ? 1}, i = 1, 2. In this article, the asymptotic behaviors of precise large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j are investigated, and under several assumptions, some corresponding asymptotic formulas are obtained.  相似文献   

18.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

19.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

20.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号