首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Let H(x, y) be a continuous bivariate distribution function with known marginal distribution functions F(x) and G(y). Suppose the values of H are given at several points, H(x i , y i ) = θ i , i = 1, 2,…, n. We first discuss conditions for the existence of a distribution satisfying these conditions, and present a procedure for checking if such a distribution exists. We then consider finding lower and upper bounds for such distributions. These bounds may be used to establish bounds on the values of Spearman's ρ and Kendall's τ. For n = 2, we present necessary and sufficient conditions for existence of such a distribution function and derive best-possible upper and lower bounds for H(x, y). As shown by a counter-example, these bounds need not be proper distribution functions, and we find conditions for these bounds to be (proper) distribution functions. We also present some results for the general case, where the values of H(x, y) are known at more than two points. In view of the simplification in notation, our results are presented in terms of copulas, but they may easily be expressed in terms of distribution functions.  相似文献   

2.
Let (X, Y) be a bivariate random vector whose distribution function H(x, y) belongs to the class of bivariate extreme-value distributions. If F1 and F2 are the marginals of X and Y, then H(x, y) = C{F1(x),F2(y)}, where C is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables Z = {log F1(X)}/{log F1(X)F2(Y)} and W = C{F1{(X),F2(Y)}. Using this distribution, an algorithm to generate random variables having bivariate extreme-value distribution is présentés. Furthermore, it is shown that for any bivariate extreme-value dependence function C, the distribution of the random variable W = C{F1(X),F2(Y)} belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family.  相似文献   

3.
Existing measures in the literature that are specifically concerned with testing and measuring independence between two continuous variables are all based on examining the definition of independence, i.e., FXY(x, y) = FX(x)FY(y). A new measure is constructed uniquely in this paper that uses the absolute value of first difference on adjacent ranks of one variable with respect to the other. This measure captures the degree of functional dependence attributable to the amount of randomness and the complexity of the underlying bivariate dependence structure in a commensurate way that existing coefficients are incapable of. As a test statistic of independence, this measure is shown to have comparable or better power than existing statistics against a wide range of alternative hypotheses that consist of functional and multivalued relational dependence with additive noise.  相似文献   

4.
A Gaussian copula is widely used to define correlated random variables. To obtain a prescribed Pearson correlation coefficient of ρx between two random variables with given marginal distributions, the correlation coefficient ρz between two standard normal variables in the copula must take a specific value which satisfies an integral equation that links ρx to ρz. In a few cases, this equation has an explicit solution, but in other cases it must be solved numerically. This paper attempts to address this issue. If two continuous random variables are involved, the marginal transformation is approximated by a weighted sum of Hermite polynomials; via Mehler’s formula, a polynomial of ρz is derived to approximate the function relationship between ρx and ρz. If a discrete variable is involved, the marginal transformation is decomposed into piecewise continuous ones, and ρx is expressed as a polynomial of ρz by Taylor expansion. For a given ρx, ρz can be efficiently determined by solving a polynomial equation.  相似文献   

5.
The classical bivariate F distribution arises from ratios of chi-squared random variables with common denominators. A consequent disadvantage is that its univariate F marginal distributions have one degree of freedom parameter in common. In this paper, we add a further independent chi-squared random variable to the denominator of one of the ratios and explore the extended bivariate F distribution, with marginals on arbitrary degrees of freedom, that results. Transformations linking F, beta and skew t distributions are then applied componentwise to produce bivariate beta and skew t distributions which also afford marginal (beta and skew t) distributions with arbitrary parameter values. We explore a variety of properties of these distributions and give an example of a potential application of the bivariate beta distribution in Bayesian analysis.  相似文献   

6.
In this work, we investigate a new class of skew-symmetric distributions, which includes the distributions with the probability density function (pdf) given by g α(x)=2f(x) Gx), introduced by Azzalini [A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]. We call this new class as the symmetric-skew-symmetric family and it has the pdf proportional to f(x) G βx), where G β(x) is the cumulative distribution function of g β(x). We give some basic properties for the symmetric-skew-symmetric family and study the particular case obtained from the normal distribution.  相似文献   

7.
We construct those distributions minimizing Fisher information for scale in Kolmogorov neighbourhoods K?(G) = {F|supx|F(x) - G(x| ? ?} of d.f.'s G satisfying certain mild conditions. The theory is sufficiently general to include those cases in which G is normal, Laplace, logistic, Student's t, etc. As well, we consider G(x) = 1 - e-x, ? 0, and correct some errors in the literature concerning this case.  相似文献   

8.
ABSTRACT

Elsewhere, I have promoted (univariate continuous) “transformation of scale” (ToS) distributions having densities of the form 2g?1(x)) where g is a symmetric distribution and Π is a transformation function with a special property. Here, I develop bivariate (readily multivariate) ToS distributions. Univariate ToS distributions have a transformation of random variable relationship with Azzalini-type skew-symmetric distributions; the bivariate ToS distribution here arises from marginal variable transformation of a particular form of bivariate skew-symmetric distribution. Examples are given, as are basic properties—unimodality, a covariance property, random variate generation—and connections with a bivariate inverse Gaussian distribution are pointed out.  相似文献   

9.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

10.
Let {X 1, …, X n } and {Y 1, …, Y m } be two samples of independent and identically distributed observations with common continuous cumulative distribution functions F(x)=P(Xx) and G(y)=P(Yy), respectively. In this article, we would like to test the no quantile treatment effect hypothesis H 0: F=G. We develop a bootstrap quantile-treatment-effect test procedure for testing H 0 under the location-scale shift model. Our test procedure avoids the calculation of the check function (which is non-differentiable at the origin and makes solving the quantile effects difficult in typical quantile regression analysis). The limiting null distribution of the test procedure is derived and the procedure is shown to be consistent against a broad family of alternatives. Simulation studies show that our proposed test procedure attains its type I error rate close to the pre-chosen significance level even for small sample sizes. Our test procedure is illustrated with two real data sets on the lifetimes of guinea pigs from a treatment-control experiment.  相似文献   

11.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

12.
Given a random sample(X1, Y1), …,(Xn, Yn) from a bivariate (BV) absolutely continuous c.d.f. H (x, y), we consider rank tests for the null hypothesis of interchangeability H0: H(x, y). Three linear rank test statistics, Wilcoxon (WN), sum of squared ranks (SSRN) and Savage (SN), are described in Section 1. In Section 2, asymptotic relative efficiency (ARE) comparisons of the three types of tests are made for Morgenstern (Plackett, 1965) and Moran (1969)BV alternatives with marginal distributions satisfying G(x) = F(x/θ) for some θ≠ 1. Both gamma and lognormal marginal distributions are used.  相似文献   

13.
In recent years characterization problems have become of increasing interest. It is well known that mean residual life e(x) = E(X - x|Xx) and right-censored mean function mR(x) = E(X | Xx), uniquely determine the distribution function F(x) = P(Xx). In this paper, we study characterizations problems for general distributions, using the doubly censored mean function m(x, y) = E(X | xXy). We show that m(x, y) characterizes F(x), obtaining the explicit expression of F(x) from m(x, y). Moreover, we give properties that any function must verifies to be a doubly censored mean function and we obtain stability theorems for these characterizations.  相似文献   

14.
A probability distribution function F is said to be symmetric when 1 ‐ F(x) ‐ F(‐x) = 0 for all x∈ R. Given a sequence of alternatives contiguous to a certain symmetric F0, the authors are concerned with testing for the null hypothesis of symmetry. The proposed tests are consistent against any nonsymmetric alternative, and their power with respect to the given sequence can easily be optimized. The tests are constructed by means of transformed empirical processes with an adequate selection of the underlying isometry, and the optimum power is obtained by suitably choosing the score functions. The test statistics are very easy to compute and their asymptotic distributions are simple.  相似文献   

15.
The Farlie-Gumbel-Morgenstern (FGM) family has been investigated in detail for various continuous marginals such as Cauchy, normal, exponential, gamma, Weibull, lognormal and others. It has been a popular model for the bivariate distribution with mild dependence. However, bivariate FGMs with continuous marginals on a bounded support discussed in the literature are only those with uniform or power marginals. In this paper we study the bivariate FGM family with marginals given by the recently proposed two-sided power (TSP) distribution. Since this family of bounded continuous distributions is very flexible, the properties of the FGM family with TSP marginals could serve as an indication of the structure of the FGM distribution with arbitrary marginals defined on a compact set. A remarkable stability of the correlation between the marginals has been observed.  相似文献   

16.
ABSTRACT

We give conditions on a ? ?1, b ∈ ( ? ∞, ∞), and f and g so that Ca, b(x, y) = xy(1 + af(x)g(y))b is a bivariate copula. Many well-known copulas are of this form, including the Ali–Mikhail–Haq Family, Huang–Kotz Family, Bairamov–Kotz Family, and Bekrizadeh–Parham–Zadkarmi Family. One result is that we produce an algorithm for producing such copulas. Another is a one-parameter family of copulas whose measures of concordance range from 0 to 1.  相似文献   

17.
For the issue of generating correlated random vector containing discrete variables, one major obstacle is to determine a suitable correlation coefficient ρz in normal space for a specified correlation coefficient ρx. This paper develops a method to solve this problem. First, the double integral evaluated for ρx is transformed into independent standard uniform space, then, a Quasi Monte Carlo method is introduced to calculate the double integral. For a given ρx, an appropriate ρz is determined by a false position method. Compared with existing methodologies, the proposed method is less efficient, but it is relatively easy to implement.  相似文献   

18.
Knowledge concerning the family of univariate continuous distributions with density function f and distribution function F defined through the relation f(x) = F α(x)(1 ? F(x))β, α, β ? , is reviewed and modestly extended. Symmetry, modality, tail behavior, order statistics, shape properties based on the mode, L-moments, and—for the first time—transformations between members of the family are the general properties considered. Fully tractable special cases include all the complementary beta distributions (including uniform, power law and cosine distributions), the logistic, exponential and Pareto distributions, the Student t distribution on 2 degrees of freedom and, newly, the distribution corresponding to α = β = 5/2. The logistic distribution is central to some of the developments of the article.  相似文献   

19.
20.
Minimum information bivariate distributions with uniform marginals and a specified rank correlation are studied in this paper. These distributions play an important role in a particular way of modeling dependent random variables which has been used in the computer code UNICORN for carrying out uncertainty analyses. It is shown that these minimum information distributions have a particular form which makes simulation of conditional distributions very simple. Approximations to the continuous distributions are discussed and explicit formulae are determined. Finally a relation is discussed to DAD theorems, and a numerical algorithm is given (which has geometric rate of covergence) for determining the minimum information distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号