首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

2.
Suppose that data {(x l,i,n , y l,i,n ): l?=?1, …, k; i?=?1, …, n} are observed from the regression models: Y l,i,n ?=?m l (x l,i,n )?+?? l,i,n , l?=?1, …, k, where the regression functions {m l } l=1 k are unknown and the random errors {? l,i,n } are dependent, following an MA(∞) structure. A new test is proposed for testing the hypothesis H 0: m 1?=?·?·?·?=?m k , without assuming that {m l } l=1 k are in a parametric family. The criterion of the test derives from a Crámer-von-Mises-type functional based on different distances between {[mcirc]} l and {[mcirc]} s , l?≠?s, l, s?=?1, …, k, where {[mcirc] l } l=1 k are nonparametric Gasser–Müller estimators of {m l } l=1 k . A generalization of the test to the case of unequal design points, with different sample sizes {n l } l=1 k and different design densities {f l } l=1 k , is also considered. The asymptotic normality of the test statistic is obtained under general conditions. Finally, a simulation study and an analysis with real data show a good behavior of the proposed test.  相似文献   

3.
Consider the linear regression model, yi = xiβ0 + ei, i = l,…,n, and an M-estimate β of βo obtained by minimizing Σρ(yi — xiβ), where ρ is a convex function. Let Sn = ΣXiXiXi and rn = Sn½ (β — β0) — Sn 2 Σxih(ei), where, with a suitable choice of h(.), the expression Σ xix(e,) provides a linear representation of β. Bahadur (1966) obtained the order of rn as n→ ∞ when βo is a one-dimensional location parameter representing the median, and Babu (1989) proved a similar result for the general regression parameter estimated by the LAD (least absolute deviations) method. We obtain the stochastic order of rn as n → ∞ for a general M-estimate as defined above, which agrees with the results of Bahadur and Babu in the special cases considered by them.  相似文献   

4.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

5.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

6.
Let X ∈ R be a random vector with a distribution which is invariant under rotations within the subspaces Vj (dim Vj. = qj) whose direct sum is R. The large sample distributions of the eigenvalues and vectors of Mn= n-1Σnl xixi are studied. In particular it is shown that several eigenvalue results of Anderson & Stephens (1972) for uniformly distributed unit vectors hold more generally.  相似文献   

7.
Consider the regression model Yi= g(xi) + ei, i = 1,…, n, where g is an unknown function defined on [0, 1], 0 = x0 < x1 < … < xn≤ 1 are chosen so that max1≤i≤n(xi-xi- 1) = 0(n-1), and where {ei} are i.i.d. with Ee1= 0 and Var e1 - s?2. In a previous paper, Cheng & Lin (1979) study three estimators of g, namely, g1n of Cheng & Lin (1979), g2n of Clark (1977), and g3n of Priestley & Chao (1972). Consistency results are established and rates of strong uniform convergence are obtained. In the current investigation the limiting distribution of &in, i = 1, 2, 3, and that of the isotonic estimator g**n are considered.  相似文献   

8.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

9.
The paper discusses D-optimal axial designs for the additive quadratic and cubic mixture models σ1≤i≤qixi + βiix2i) and σ1≤i≤qixi + βiix2i + βiiix3i), where xi≥ 0, x1 + . . . + xq = 1. For the quadratic model, a saturated symmetric axial design is used, in which support points are of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2 and 0 ≤δ2 <δ1 ≤ 1/(q ?1). It is proved that when 3 ≤q≤ 6, the above design is D-optimal if δ2 = 0 and δ1 = 1/(q?1), and when q≥ 7 it is D-optimal if δ2 = 0 and δ1 = [5q?1 ? (9q2?10q + 1)1/2]/(4q2). Similar results exist for the cubic model, with support points of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2, 3 and 0 = δ3 <δ2 < δ1 ≤1/(q?1). The saturated D-optimal axial design and D-optimal design for the quadratic model are compared in terms of their efficiency and uniformity.  相似文献   

10.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

11.
ABSTRACT

Consider the heteroscedastic partially linear errors-in-variables (EV) model yi = xiβ + g(ti) + εi, ξi = xi + μi (1 ? i ? n), where εi = σiei are random errors with mean zero, σ2i = f(ui), (xi, ti, ui) are non random design points, xi are observed with measurement errors μi. When f( · ) is known, we derive the Berry–Esseen type bounds for estimators of β and g( · ) under {ei,?1 ? i ? n} is a sequence of stationary α-mixing random variables, when f( · ) is unknown, the Berry–Esseen type bounds for estimators of β, g( · ), and f( · ) are discussed under independent errors.  相似文献   

12.
In this paper, we consider the simple linear errors-in-variables (EV) regression models: ηi=θ+βxi+εi,ξi=xi+δi,1≤in, where θ,β,x1,x2,… are unknown constants (parameters), (ε1,δ1),(ε2,δ2),… are errors and ξi,ηi,i=1,2,… are observable. The asymptotic normality for the least square (LS) estimators of the unknown parameters β and θ in the model are established under the assumptions that the errors are m-dependent, martingale differences, ?-mixing, ρ-mixing and α-mixing.  相似文献   

13.
14.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

15.
An estimating equation for a parameter θ, based on an observation ?, is an equation g(x,θ)=0 which can be solved for θ in terms of x. An estimating equation is unbiased if the funaction g has 0 mean for every θ. For the case when the form of the frequency function p(x,θ) is completely specified up to the unknown real parameter θ, the optimality of the m.1 equation ?logp=0 in the class of all unbiased estimating equations was established by Godambe (1960). In this paper we allow the form of the frequency function p to vary assuming that x=(x1,…,xn)?Rn and that under p, E(xi)=θ. x1,…, xn are independent observations on a variate x, it is shown that among all the unbiased estimating equations for θ, x??θ=0 is uniquely optimum up to a constant multiple.  相似文献   

16.
A problem of selecting populations better than a control is considered. When the populations are uniformly distributed, empirical Bayes rules are derived for a linear loss function for both the known control parameter and the unknown control parameter cases. When the priors are assumed to have bounded supports, empirical Bayes rules for selecting good populations are derived for distributions with truncation parameters (i.e. the form of the pdf is f(x|θ)= pi(x)ci(θ)I(0, θ)(x)). Monte Carlo studies are carried out which determine the minimum sample sizes needed to make the relative errors less than ε for given ε-values.  相似文献   

17.
Designs for quadratic and cubic regression are considered when the possible choices of the controlable variable are points x=( x1,x2,…,xq) in the q-dimensional. Full of radius R, Bq(R) ={x:Σ4ix2i?R2}. The designs that are optimum among rotatable designs with respect to the D-, A-, and E-optimality criteria are compared in their performance relative to these and other criteria, including extrapolation. Additionally, the performance of a design optimum for one value of R, when it is implemented for a different value of R, is investigated. Some of the results are developed algebraically; others, numerically. For example, in quadratic regression the A-optimum design appears to be fairly robust in its efficiency, under variation of criterion.  相似文献   

18.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

19.
20.
Let {ξi} be an absolutely regular sequence of identically distributed random variables having common density function f(x). Let Hk(x,y) (k=1, 2,…) be a sequence of Borel-measurable functions and fn(x)=n?1(Hn(x,ξ1)+…+Hn(x,ξn)) the empirical density function. In this paper, the asymptotic property of the probability P(supx|fn(x)?f(x)|>ε) (n→∞) is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号