排序方式: 共有86条查询结果,搜索用时 15 毫秒
81.
This paper addresses the problem of detecting a mixture of parallel regression lines when information about group member¬ship of individual cases is not given. The problem is approached as a missing variable problem, with the missing variables being the dummy variables that code for groups. If a mixture of par¬allel regression lines with normally distributed error terms is present, a simple regression model without dummy variables will produce residuals that follow approximately a mixed normal dis¬tribution. In a simulation studyr several goodness-of-fit tests of normality were used to test the residuals obtained from mis-specified models that excluded dummy variables, Factors varied in the simulation included the number and the separation of the parallel lines and the sample size, The goodness-of-fit test based on the sample kurtosis (82) was overall most powerful in detecting mixtures of parallel regression lines, Applications are discussed. 相似文献
82.
Muhammad Khalid Pervaiz C.J. Skinner 《Australian & New Zealand Journal of Statistics》1990,32(1):71-86
A Monte Carlo study of the size and power of tests of equality of two covariance matrices is carried out. Tests based upon normality assumptions, elliptical distribution assumptions as well as distribution-free tests are compared. Samples are generated from normal, elliptical and non-elliptical populations. The elliptical-theory tests, in particular, have poor size properties for both elliptical distributions with moderate sample sizes and for non-elliptical distributions. 相似文献
83.
Martin A. Stapanian Forest C. Garner Kirk E. Fitzgerald George T. Flatman Evan J. Englund 《统计学通讯:模拟与计算》2013,42(2-3):667-687
Mardia's multivariate kurtosis and the generalized distance have desirable properties as multivariate outlier tests. However, extensive critical values have not been published heretofore. A published approximation formula for critical values of the kurtosis is shown to inadequately control the type I error rate, with observed error rates often differing from their intended values by a factor of two or more. Critical values derived from simulations for both tests for up to 25 dimensions and 500 observations are presented. The power curves of both tests are discussed. The generalized distance is the more powerful test when exactly one outlier is present and the contaminant is substantially mean-shifted. However, as the number of outliers increases, the kurtosis becomes the more powerful test. The two tests are compared with respect to power and vulnerability to masking. Recommendations for the use of these tests and interpretation of results are given. 相似文献
84.
《统计学通讯:模拟与计算》2013,42(2):267-282
ABSTRACT In this article, we derive exact explicit expressions for the single, double, triple, and quadruple moments of order statistics from the generalized Pareto distribution (GPD). Also, we obtain the best linear unbiased estimates of the location and scale parameters (BLUE's) of the GPD. We then use these results to determine the mean, variance, and coefficients of skewness and kurtosis of certain linear functions of order statistics. These are then utilized to develop approximate confidence intervals for the generalized Pareto parameters using Edgeworth approximation and compare them with those based on Monte Carlo simulations. To show the usefulness of our results, we also present a numerical example. Finally, we give an application to real data. 相似文献
85.
ABSTRACTIn this article, the kurtosis of the logistic-exponential distribution is analyzed. All the moments of this survival distribution are finite, but do not possess closed-form expressions. The standardized fourth central moment, known as Pearson’s coefficient of kurtosis and often used to describe the kurtosis of a distribution, can thus also not be expressed in closed form for the logistic-exponential distribution. Alternative kurtosis measures are therefore considered, specifically quantile-based measures and the L-kurtosis ratio. It is shown that these kurtosis measures of the logistic-exponential distribution are invariant to the values of the distribution’s single shape parameter and hence skewness invariant. 相似文献
86.
Measures of univariate skewness and kurtosis have long been used as a test of univariate normality, several omnibus test procedures based on a combination of the measures having been proposed, see Pearson, D’Agestino and Bowman (1977) and Mardia (1979). Mardia (1970) proposed measures of multivariate skewness and kurtosis, and constructed a test of multinormality based on these measures. we obtain the correlation between these measures and propose several omnibus tests using the two measures. The performances of these tests are compared by means of a Monte Carlo study. 相似文献