首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
管理学   1篇
社会学   4篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 163 毫秒
1
1.
Urbanization threatens biodiversity, yet the number and scope of studies on urban arthropod biodiversity are relatively limited. We sampled ant communities in three urban habitats (forest remnants, community gardens, vacant lots) in Detroit and Toledo, USA, to compare species richness, abundance, and species composition. We measured 24 site characteristics to examine relationships between richness and composition and habitat patch size, vegetation, and urban features. Ant richness was higher in forests (26) than in gardens (14) and intermediate in vacant lots (20). Ant richness in gardens and vacant lots negatively correlated with abundance of an exotic ant species (Tetramorium caespitum); thus this ant may affect native ant richness in urban habitats. Ant composition differed with habitat type, and abundance was lowest in forests. Site characteristics varied with habitat type: forests were larger, had more woody plants, higher woody plant richness, more branches, and leaf litter whereas lots and gardens had more concrete and buildings. Vacant lots had taller herbaceous vegetation, and gardens had higher forb richness, density, and more bare ground. Differences in vegetation did not correlate with ant richness, but several vegetation factors (e.g. patch size, number and size of trees, leaf litter, and amount of concrete and buildings) correlated with differences in ant species composition. Additional factors relating to soil, nests, or microclimatic factors may also be important for urban ant communities. Implications for biodiversity conservation in urban ecosystems are discussed.  相似文献   
2.
Urban Ecosystems - Urban gardens, or spaces that include vegetables, fruit trees, and ornamental plants, can support bird species and communities by providing food and nesting habitat within urban...  相似文献   
3.
Advancement of knowledge is the seed of the innovation process. As innovations have become more complex, organisations are driven by an increased need to collaborate in order to combine specialist capabilities to meet emerging market needs. The life sciences are one sector where collaborative innovation is highly evident. This article examines the phenomenon of knowledge-generating networks within the life sciences. The study explores the drivers of collaborative endeavours and investigates how knowledge networks linking the capabilities of public research centres and commercially focused pharmaceutical organisations can be managed to deliver the required synergistic benefits for partnering organisations. Three case studies of functioning university–industry knowledge networks are analysed and a model reflecting their network's life-cycle phases is presented. The discussion identifies the specific challenge posed at each of the network's development stages, together with the management process required to secure sustainable knowledge creation and effective transfer of this knowledge into innovation-generating R&D.  相似文献   
4.
Urban green spaces, such as forest fragments, vacant lots, and community gardens, are increasingly highlighted as biodiversity refuges and are of growing interest to conservation. At the same time, the burgeoning urban garden movement partially seeks to ameliorate problems of food security. Arthropods link these two issues (conservation and food security) given their abundance, diversity, and role as providers of ecosystem services like pollination and pest control. Many previous studies of urban arthropods focused on a single taxon (e.g. order or family), and examined either local habitat drivers or effects of landscape characteristics. In contrast, we examined both local and landscape drivers of community patterns, and examined differences in abundance, richness, and trophic structure of arthropod communities in urban forest fragments, vacant lots, and community gardens. We sampled ground-foraging arthropods, collected data on 24 local habitat features (e.g., vegetation, ground cover, concrete), and examined land-cover types within 2 km of 12 study sites in Toledo, Ohio. We found that abundance and richness of urban arthropods differed by habitat type and that richness of ants and spiders, in particular, varied among lots, gardens, and forests. Several local and landscape factors correlated with changes in abundance, richness, and trophic composition of arthropods, and different factors were important for specific arthropod groups. Overwhelmingly, local factors were the predominant (80 % of interactions) driver of arthropods in this urban environment. These results indicate that park managers and gardeners alike may be able to manage forests and gardens to promote biodiversity of desired organisms and potentially improve ecosystem services within the urban landscape.  相似文献   
5.
Urban gardens may support bees by providing resources in otherwise resource-poor environments. However, it is unclear whether urban, backyard gardens with native plants will support more bees than gardens without native plants. We examined backyard gardens in northwestern Ohio to ask: 1) Does bee diversity, abundance, and community composition differ in backyard gardens with and without native plants? 2) What characteristics of backyard gardens and land cover in the surrounding landscape correlate with changes in the bee community? 3) Do bees in backyard gardens respond more strongly to local or landscape factors? We sampled bees with pan trapping, netting, and direct observation. We examined vegetation characteristics and land cover in 500 m, 1 km, and 2 km buffers surrounding each garden. Abundance of all bees, native bees, and cavity-nesting bees (but not ground-nesting bees) was greater in native plant gardens but only richness of cavity-nesting bees differed in gardens with and without native plants. Bee community composition differed in gardens with and without native plants. Overall, bee richness and abundance were positively correlated with local characteristics of backyard gardens, such as increased floral abundance, taller vegetation, more cover by woody plants, less cover by grass, and larger vegetable gardens. Differences in the amount of forest, open space, and wetlands surrounding gardens influenced abundance of cavity- and ground-nesting bees, but at different spatial scales. Thus, presence of native plants, and local and landscape characteristics might play important roles in maintaining bee diversity within urban areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号