首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
统计学   1篇
  2004年   1篇
排序方式: 共有1条查询结果,搜索用时 62 毫秒
1
1.
The expectation maximization (EM) algorithm is a widely used parameter approach for estimating the parameters of multivariate multinomial mixtures in a latent class model. However, this approach has unsatisfactory computing efficiency. This study proposes a fuzzy clustering algorithm (FCA) based on both the maximum penalized likelihood (MPL) for the latent class model and the modified penalty fuzzy c-means (PFCM) for normal mixtures. Numerical examples confirm that the FCA-MPL algorithm is more efficient (that is, requires fewer iterations) and more computationally effective (measured by the approximate relative ratio of accurate classification) than the EM algorithm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号