首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
统计学   17篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Jasra  Ajay  Yu  Fangyuan  Heng  Jeremy 《Statistics and Computing》2020,30(5):1381-1402
Statistics and Computing - In the following article we consider the numerical approximation of the non-linear filter in continuous-time, where the observations and signal follow diffusion...  相似文献   
2.
In this paper, we consider parametric Bayesian inference for stochastic differential equations driven by a pure‐jump stable Lévy process, which is observed at high frequency. In most cases of practical interest, the likelihood function is not available; hence, we use a quasi‐likelihood and place an associated prior on the unknown parameters. It is shown under regularity conditions that there is a Bernstein–von Mises theorem associated to the posterior. We then develop a Markov chain Monte Carlo algorithm for Bayesian inference, and assisted with theoretical results, we show how to scale Metropolis–Hastings proposals when the frequency of the data grows, in order to prevent the acceptance ratio from going to zero in the large data limit. Our algorithm is presented on numerical examples that help verify our theoretical findings.  相似文献   
3.
Particle filters are a powerful and flexible tool for performing inference on state-space models. They involve a collection of samples evolving over time through a combination of sampling and re-sampling steps. The re-sampling step is necessary to ensure that weight degeneracy is avoided. In several situations of statistical interest, it is important to be able to compare the estimates produced by two different particle filters; consequently, being able to efficiently couple two particle filter trajectories is often of paramount importance. In this text, we propose several ways to do so. In particular, we leverage ideas from the optimal transportation literature. In general, though computing the optimal transport map is extremely computationally expensive, to deal with this, we introduce computationally tractable approximations to optimal transport couplings. We demonstrate that our resulting algorithms for coupling two particle filter trajectories often perform orders of magnitude more efficiently than more standard approaches.  相似文献   
4.
Approximate Bayesian computation (ABC) is a popular approach to address inference problems where the likelihood function is intractable, or expensive to calculate. To improve over Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte Carlo (SMC) methods has recently been suggested. Most effective SMC algorithms that are currently available for ABC have a computational complexity that is quadratic in the number of Monte Carlo samples (Beaumont et al., Biometrika 86:983?C990, 2009; Peters et al., Technical report, 2008; Toni et al., J.?Roy. Soc. Interface 6:187?C202, 2009) and require the careful choice of simulation parameters. In this article an adaptive SMC algorithm is proposed which admits a computational complexity that is linear in the number of samples and adaptively determines the simulation parameters. We demonstrate our algorithm on a toy example and on a birth-death-mutation model arising in epidemiology.  相似文献   
5.
Statistics and Computing - This paper presents tests to formally choose between regression models using different derivatives of a functional covariate in scalar-on-function regression. We...  相似文献   
6.
We consider Bayesian parameter inference associated to partially-observed stochastic processes that start from a set B 0 and are stopped or killed at the first hitting time of a known set A. Such processes occur naturally within the context of a wide variety of applications. The associated posterior distributions are highly complex and posterior parameter inference requires the use of advanced Markov chain Monte Carlo (MCMC) techniques. Our approach uses a recently introduced simulation methodology, particle Markov chain Monte Carlo (PMCMC) (Andrieu et al. 2010), where sequential Monte Carlo (SMC) (Doucet et al. 2001; Liu 2001) approximations are embedded within MCMC. However, when the parameter of interest is fixed, standard SMC algorithms are not always appropriate for many stopped processes. In Chen et al. (2005), Del Moral (2004), the authors introduce SMC approximations of multi-level Feynman-Kac formulae, which can lead to more efficient algorithms. This is achieved by devising a sequence of sets from B 0 to A and then performing the resampling step only when the samples of the process reach intermediate sets in the sequence. The choice of the intermediate sets is critical to the performance of such a scheme. In this paper, we demonstrate that multi-level SMC algorithms can be used as a proposal in PMCMC. In addition, we introduce a flexible strategy that adapts the sets for different parameter proposals. Our methodology is illustrated on the coalescent model with migration.  相似文献   
7.
In this article, we introduce two new estimates of the normalizing constant (or marginal likelihood) for partially observed diffusion (POD) processes, with discrete observations. One estimate is biased but non-negative and the other is unbiased but not almost surely non-negative. Our method uses the multilevel particle filter of Jasra et al. (Multilevel particle lter, arXiv:1510.04977, 2015). We show that, under assumptions, for Euler discretized PODs and a given \(\varepsilon >0\) in order to obtain a mean square error (MSE) of \({\mathcal {O}}(\varepsilon ^2)\) one requires a work of \({\mathcal {O}}(\varepsilon ^{-2.5})\) for our new estimates versus a standard particle filter that requires a work of \({\mathcal {O}}(\varepsilon ^{-3})\). Our theoretical results are supported by numerical simulations.  相似文献   
8.
Pricing options is an important problem in financial engineering. In many scenarios of practical interest, financial option prices associated with an underlying asset reduces to computing an expectation w.r.t. a diffusion process. In general, these expectations cannot be calculated analytically, and one way to approximate these quantities is via the Monte Carlo (MC) method; MC methods have been used to price options since at least the 1970s. It has been seen in Del Moral P, Shevchenko PV. [Valuation of barrier options using sequential Monte Carlo. 2014. arXiv preprint] and Jasra A, Del Moral P. [Sequential Monte Carlo methods for option pricing. Stoch Anal Appl. 2011;29:292–316] that Sequential Monte Carlo (SMC) methods are a natural tool to apply in this context and can vastly improve over standard MC. In this article, in a similar spirit to Del Moral and Shevchenko (2014) and Jasra and Del Moral (2011), we show that one can achieve significant gains by using SMC methods by constructing a sequence of artificial target densities over time. In particular, we approximate the optimal importance sampling distribution in the SMC algorithm by using a sequence of weighting functions. This is demonstrated on two examples, barrier options and target accrual redemption notes (TARNs). We also provide a proof of unbiasedness of our SMC estimate.  相似文献   
9.
In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X n } n=1,…,N in parallel in order to simulate from some target density π (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156–163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653–666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411–436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731–792, 1997).  相似文献   
10.
We consider the problem of the computation of smoothed additive functionals, which are some integrals with respect to the joint smoothing distribution. It is a key issue in inference for general state-space models as these quantities appear naturally for maximum likelihood parameter inference. The computation of smoothed additive functionals is very challenging as exact computations are not possible for non-linear non-Gaussian state-space models. It becomes even more difficult when the hidden state lies in a high dimensional space because traditional numerical methods suffer from the curse of dimensionality. We propose a new algorithm to efficiently calculate the smoothed additive functionals in an online manner for a specific family of high-dimensional state-space models in discrete time, which is named the Space–Time Forward Smoothing (STFS) algorithm. The cost of this algorithm is at least O(N2d2T), which is polynomial in d. T and N denote the number of time steps and the number of particles respectively, while d is the dimension of the hidden state space. Its superior performance over other existing methods is illustrated by various simulation studies. Moreover, STFS algorithm is successfully applied to perform Maximum Likelihood estimation for static model parameters both in an online and an offline manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号