首页 | 本学科首页   官方微博 | 高级检索  
     


A Bayesian method for classification and discrimination
Authors:Michael Lavine  Mike West
Abstract:We discuss Bayesian analyses of traditional normal-mixture models for classification and discrimination. The development involves application of an iterative resampling approach to Monte Carlo inference, commonly called Gibbs sampling, and demonstrates routine application. We stress the benefits of exact analyses over traditional classification and discrimination techniques, including the ease with which such analyses may be performed in a quite general setting, with possibly several normal-mixture components having different covariance matrices, the computation of exact posterior classification probabilities for observed data and for future cases to be classified, and posterior distributions for these probabilities that allow for assessment of second-level uncertainties in classification.
Keywords:Bayesian computations  classification  discrimination  mixtures of normals  posterior sampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号