首页 | 本学科首页   官方微博 | 高级检索  
     


Multivariate process dispersion monitoring without subgrouping
Authors:Abdul Haq  Michael B. C. Khoo
Affiliation:aDepartment of Statistics, Quaid-i-Azam University, Islamabad, Pakistan;bSchool of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia
Abstract:The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.
Keywords:Average run length   ACCUSUM   AEWMA   control chart   CUSUM   EWMA   Monte Carlo simulation   statistical process control   covariance matrix
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号