首页 | 本学科首页   官方微博 | 高级检索  
     


ESTIMATION OF PARAMETERS IN ARFIMA PROCESSES: A SIMULATION STUDY
Abstract:
It is known that, in the presence of short memory components, the estimation of the fractional parameter d in an Autoregressive Fractionally Integrated Moving Average, ARFIMA(p, d, q), process has some difficulties (see [1] Smith, J., Taylor, N. and Yadav, S. 1997. Comparing the bias and misspecification in ARFIMA models. Journal of Time Series Analysis, 18(5): 507–527. [Crossref] , [Google Scholar]). In this paper, we continue the efforts made by Smith et al. [1] Smith, J., Taylor, N. and Yadav, S. 1997. Comparing the bias and misspecification in ARFIMA models. Journal of Time Series Analysis, 18(5): 507–527. [Crossref] , [Google Scholar] and Beveridge and Oickle [2] Beveridge, S. and Oickle, C. 1993. Estimating fractionally integrated time series models. Economics Letters, 43: 137–142.  [Google Scholar] by conducting a simulation study to evaluate the convergence properties of the iterative estimation procedure suggested by Hosking [3] Hosking, J. 1981. Fractional differencing. Biometrika, 68(1): 165–176. [Crossref], [Web of Science ®] , [Google Scholar]. In this context we consider some semiparametric approaches and a parametric method proposed by Fox-Taqqu[4] Fox, R. and Taqqu, M. S. 1986. Large-sample properties of parameter estimates for strongly dependent stationary gaussian time series. The Annals of Statistics, 14(2): 517–532. [Crossref], [Web of Science ®] , [Google Scholar]. We also investigate the method proposed by Robinson [5] Robinson, P. M. 1995a. Log-periodogram regression of time series with long range dependence. The Annals of Statistics, 23(3): 1048–1072. [Crossref], [Web of Science ®] , [Google Scholar] and a modification using the smoothed periodogram function.
Keywords:Fractional differencing  Long memory  Smoothed periodogram regression  Periodogram regression  Whittle maximum likelihood procedure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号