首页 | 本学科首页   官方微博 | 高级检索  
     

基于有效预测区域的模糊数据关联
引用本文:张宇,张建州,游志胜. 基于有效预测区域的模糊数据关联[J]. 电子科技大学学报(社会科学版), 2001, 0(6)
作者姓名:张宇  张建州  游志胜
作者单位:成都航空职业技术学院计算机系 成都610061(张宇),四川大学计算机学院 成都610064(张建州),四川大学计算机学院 成都610064(游志胜)
基金项目:国家自然科学基金重点资助项目No. 69732010。
摘    要:多目标多传感器跟踪系统由数据关联和目标状态估计两部分组成,数据关联是多目标跟踪系统研究的核心。数据关联和目标状态估计两部分既有一定的独立性又有密切的联系,而将两部分合理地结合对提高跟踪系统的性能是重要的。该文以跟踪目标的有效预测区域为依据,利用基于Mahalanobis距离的模糊均值聚类方法解决数据关联问题,在一定程度上将数据关联和目标状态估计两个不同的过程相结合,仿真计算说明了其有效性。

关 键 词:多目标多传感器跟踪系统  数据关联  模糊聚类  Mahalanobis距离

Fuzzy Data Correlation Based on the Predicted Validation Region
hang Yu Zhang Jianzhou. Fuzzy Data Correlation Based on the Predicted Validation Region[J]. Journal of University of Electronic Science and Technology of China(Social Sciences Edition), 2001, 0(6)
Authors:hang Yu Zhang Jianzhou
Abstract:Multitarget-multisensor tracking systems consist of data correlation and state estimation. The multitarget tracking is made interesting by the data association problem. The data correlation and state estimation are both certainly independent and closely relative, but the performance of tracking systems can be improved by suitable incorporating the two components. In this paper, a fuzzy correlation approach is presented based on fuzzy clustering means algorithm with Mahalanobis distance. The approach, in a sense, fuses two different procedures of data correlation and state estimation. The simulation result using Monte Carlo method is given to demonstrate the efficiency of the new approach.
Keywords:multitarget-multisensor tracking  data correlation  fuzzy clustering  Mahalanobis distance
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号