首页 | 本学科首页   官方微博 | 高级检索  
     

阶乘幂的差分算子及其逆
引用本文:孙建新,胡金杰. 阶乘幂的差分算子及其逆[J]. 绍兴文理学院学报, 2005, 0(1)
作者姓名:孙建新  胡金杰
作者单位:绍兴文理学院数学系 浙江绍兴312000(孙建新),绍兴文理学院数学系 浙江绍兴312000(胡金杰)
摘    要:
与微分算子及其逆算子积分算子作比较,讨论了差分算子及其逆算子(和分).主要结果为关于乘积的k-阶差分的Leibniz公式(定理6.3)以及乘积的k-阶和分的对偶公式(定理6.4).显然,差分算子及其逆算子是阶乘幂多项式的方便工具.

关 键 词:差分算子  逆算子  Lobniz公式  阶乘幂多项式

The Difference Operator of Factorial Power and Its Inverse
Sun Jianxin Hu Jinjie. The Difference Operator of Factorial Power and Its Inverse[J]. Journal of Shaoxing College of Arts and Sciences, 2005, 0(1)
Authors:Sun Jianxin Hu Jinjie
Abstract:
In comparison with the differential operator and its inverse - integral operator, the difference operator and its inverse (sum operator) are discussed in this paper. The main results are the Leibniz' formula of difference of k - order of product( Th. 6.3 ) and its dual form - the formula of sum of k - order of product ( Th . 6.4) . Clearly, the difference operator or sum operator is the convenient tool for the polynomial of factorial powers.
Keywords:difference operator  inverse operator  Leibniz' formula  polynomial of factorial power
本文献已被 CNKI 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号