首页 | 本学科首页   官方微博 | 高级检索  
     


Identifiable finite mixtures of location models for clustering mixed-mode data
Authors:Willse  Alan  Boik  Robert J.
Abstract:For clustering mixed categorical and continuous data, Lawrence and Krzanowski (1996) proposed a finite mixture model in which component densities conform to the location model. In the graphical models literature the location model is known as the homogeneous Conditional Gaussian model. In this paper it is shown that their model is not identifiable without imposing additional restrictions. Specifically, for g groups and m locations, (g!)m–1 distinct sets of parameter values (not including permutations of the group mixing parameters) produce the same likelihood function. Excessive shrinkage of parameter estimates in a simulation experiment reported by Lawrence and Krzanowski (1996) is shown to be an artifact of the model's non-identifiability. Identifiable finite mixture models can be obtained by imposing restrictions on the conditional means of the continuous variables. These new identified models are assessed in simulation experiments. The conditional mean structure of the continuous variables in the restricted location mixture models is similar to that in the underlying variable mixture models proposed by Everitt (1988), but the restricted location mixture models are more computationally tractable.
Keywords:classification  conditional Gaussian model  EM algorithm  shrinkage  underlying variable mixture model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号