Projection estimators of Pickands dependence functions |
| |
Authors: | Amélie Fils‐Villetard Armelle Guillou Johan Segers |
| |
Affiliation: | 1. Laboratoire de statistique théorique et appliquée Université Pierre‐et‐Marie‐Curie 175, rue du Chevaleret FR‐75013 Paris, France;2. Département de mathématique Université de Strasbourg, IRMA 7, rue René‐Descartes FR‐67084 Strasbourg cedex, France;3. Institut de statistique Université catholique de Louvain 20, Voie du Roman Pays BE‐1348 Louvain‐la‐Neuve, Belgium |
| |
Abstract: | The authors consider the construction of intrinsic estimators for the Pickands dependence function of an extreme‐value copula. They show how an arbitrary initial estimator can be modified to satisfy the required shape constraints. Their solution consists in projecting this estimator in the space of Pickands functions, which forms a closed and convex subset of a Hilbert space. As the solution is not explicit, they replace this functional parameter space by a sieve of finite‐dimensional subsets. They establish the asymptotic distribution of the projection estimator and its finite‐dimensional approximations, from which they conclude that the projected estimator is at least as efficient as the initial one. |
| |
Keywords: | Extreme‐value copula Hilbert space Pickands dependence function Projection shape constraint stable tail dependence function tangent cone |
|
|