Abstract: | We investigate the construction of a BCa-type bootstrap procedure for setting approximate prediction intervals for an efficient estimator θm of a scalar parameter θ, based on a future sample of size m. The results are also extended to nonparametric situations, which can be used to form bootstrap prediction intervals for a large class of statistics. These intervals are transformation-respecting and range-preserving. The asymptotic performance of our procedure is assessed by allowing both the past and future sample sizes to tend to infinity. The resulting intervals are then shown to be second-order correct and second-order accurate. These second-order properties are established in terms of min(m, n), and not the past sample size n alone. |