首页 | 本学科首页   官方微博 | 高级检索  
     


Exact and efficient Bayesian inference for multiple changepoint problems
Authors:Paul Fearnhead
Affiliation:(1) Department of Mathematics and Statistics, Lancaster University, Lancaster
Abstract:
We demonstrate how to perform direct simulation from the posterior distribution of a class of multiple changepoint models where the number of changepoints is unknown. The class of models assumes independence between the posterior distribution of the parameters associated with segments of data between successive changepoints. This approach is based on the use of recursions, and is related to work on product partition models. The computational complexity of the approach is quadratic in the number of observations, but an approximate version, which introduces negligible error, and whose computational cost is roughly linear in the number of observations, is also possible. Our approach can be useful, for example within an MCMC algorithm, even when the independence assumptions do not hold. We demonstrate our approach on coal-mining disaster data and on well-log data. Our method can cope with a range of models, and exact simulation from the posterior distribution is possible in a matter of minutes.
Keywords:Bayes factor  Forward-backward algorithm  Model choice  Perfect simulation  Reversible jump MCMC  Well-log data
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号