摘 要: | 针对制丝生产工艺中松散回潮质量预测困难,出料中水的质量分数和出料温度波动大等问题,课题组提出了结合知识图谱与深度神经网络的预测方法。该方法首先从工人经验、技术标准文件、生产规范等当中抽取多源异构数据构建出统一化的知识图谱数据库,然后通过词向量转换工具word2vec将知识图数据转换成可表示的二维向量,最后利用构建的BIGRU Attention KG模型进行预测、输出结果。经由案例验证表明所提出模型具有有效性和可行性。该方法实现了定性数据到定量数据再到定性输出的转换过程,为松散回潮质量预测提供了一种新的思路和方法。
|