摘 要: | 针对工业条件限制下采集的印花布数据集图像分辨率低、检测效果差等问题,课题组提出基于超分辨率模型SRGAN与YOLO V4网络的织物疵点检测方法,并对SRGAN算法进行改进。课题组首先使用改进的SRGAN算法对原数据集进行超分辨率重构,提高图像分辨率;然后将重构图翻转变化与原图共同作为数据集输入YOLO V4进行网络训练;最后通过YOLO V4网络检测印花布表面疵点。实验结果表明:该方法可提高低分辨率织物图疵点检测效果,准确率高达90.29%,比超分辨率重构前提升了13.19%,能实现实时定位疵点的准确位置并输出疵点类别。
|