首页 | 本学科首页   官方微博 | 高级检索  
     

基于状态空间的贝叶斯跳跃厚尾金融随机波动模型研究
引用本文:朱慧明,黄 超,郝立亚,虞克明,李素芳. 基于状态空间的贝叶斯跳跃厚尾金融随机波动模型研究[J]. 中国管理科学, 2010, 18(6): 17-25
作者姓名:朱慧明  黄 超  郝立亚  虞克明  李素芳
作者单位:1. 湖南大学工商管理学院, 湖南 长沙 410082;2. Brunel大学数学系, 伦敦 UB8 3PH
基金项目:国家自然科学基金资助项目(70771038,71031004);教育部留学回国人员科研启动基金项目(教外司留[2010]609);湖南省自然科学基金创新群体项目(09JJ702);教育部长江学者与发展创新团队项目
摘    要:
针对金融市场中跳跃特征的刻画问题,提出了贝叶斯跳跃厚尾随机波动模型。通过随机波动模型的结构分析和状态空间转换,设计了模型参数估计的MCMC算法,利用Kalman滤波和高斯模拟平滑方法估计模型的潜在波动,运用贝叶斯因子对随机波动类模型进行比较分析,并利用中国和美国的股市收益数据进行实证分析。研究结果表明:在刻画中、美两国股票市场的波动特征方面,跳跃厚尾随机波动模型要明显优于厚尾随机波动模型和标准随机波动模型,并且金融危机背景下的中国和美国股票市场都具有明显的波动持续性以及跳跃特征。

关 键 词:随机波动  状态空间  Kalman滤波  跳跃过程  贝叶斯因子  
收稿时间:2009-12-03
修稿时间:2010-10-23

Bayesian Analysis of Heavy-tailed Financial Stochastic Volatility Models with Jumps Based on its State Space
ZHU Hui-ming,HUANG Chao,HAO Li-ya,YU Ke-ming,LI Su-fang. Bayesian Analysis of Heavy-tailed Financial Stochastic Volatility Models with Jumps Based on its State Space[J]. Chinese Journal of Management Science, 2010, 18(6): 17-25
Authors:ZHU Hui-ming  HUANG Chao  HAO Li-ya  YU Ke-ming  LI Su-fang
Affiliation:1. College of Business Administration, Hunan University, Changsha 410082, China;2. Department of Mathematical Science, Brunel University, London UB8 3PH, UK
Abstract:
This paper proposes the Bayesian heavy tailed stochastic volatility models with jumps to describe the jumps characteristics in financial market In terms of the volatility models' structure and their state space transition,we construct a Markov Chain Monte Carlo algo rithm to estimate parameters,utilize Kalman filters and Gaussian simulation smoother to analyze the latent volatility implied in models,and compare volatility models through Bayesian factors.Then the suggested approach is applied to analyze the volatility character of the stock market in China and America.The results show that the jump character is significant both in China and America stock market,and the heavy-tailed stochastic volatility model with jumps is superior to the standard volatility model in depicting volatility character.
Keywords:stochastic volatility  state space  Kalman Filter  jump process  bayesian factor  
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号