首页 | 本学科首页   官方微博 | 高级检索  
     


Approximate inference in heteroskedastic regressions: A numerical evaluation
Authors:Francisco Cribari-Neto  Maria da Glória A. Lima
Affiliation:1. Departamento de Estatística , Universidade Federal de Pernambuco, Cidade Universitária , Recife , PE , 50740–540 , Brazil;2. Departamento de Estatística e Informática , Universidade Federal Rural de Pernambuco , Dois Irm?os, Recife , PE , 52171–900 , Brazil
Abstract:
The commonly made assumption that all stochastic error terms in the linear regression model share the same variance (homoskedasticity) is oftentimes violated in practical applications, especially when they are based on cross-sectional data. As a precaution, a number of practitioners choose to base inference on the parameters that index the model on tests whose statistics employ asymptotically correct standard errors, i.e. standard errors that are asymptotically valid whether or not the errors are homoskedastic. In this paper, we use numerical integration methods to evaluate the finite-sample performance of tests based on different (alternative) heteroskedasticity-consistent standard errors. Emphasis is placed on a few recently proposed heteroskedasticity-consistent covariance matrix estimators. Overall, the results favor the HC4 and HC5 heteroskedasticity-robust standard errors. We also consider the use of restricted residuals when constructing asymptotically valid standard errors. Our results show that the only test that clearly benefits from such a strategy is the HC0 test.
Keywords:covariance matrix estimation  heteroskedasticity  leverage point  linear regression  quasi-t test
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号