首页 | 本学科首页   官方微博 | 高级检索  
     


Linear Transformations of Linear Mixed-Effects Models
Authors:Christopher H. Morrell  Jay D. Pearson  Larry J. Brant
Affiliation:1. Mathematical Sciences Department , Loyola College in Maryland , Baltimore , MD , 21210 , USA;2. Gerontology Research Center , National Institute on Aging , Baltimore , MD , 21224 , USA
Abstract:
A number of articles have discussed the way lower order polynomial and interaction terms should be handled in linear regression models. Only if all lower order terms are included in the model will the regression model be invariant with respect to coding transformations of the variables. If lower order terms are omitted, the regression model will not be well formulated. In this paper, we extend this work to examine the implications of the ordering of variables in the linear mixed-effects model. We demonstrate how linear transformations of the variables affect the model and tests of significance of fixed effects in the model. We show how the transformations modify the random effects in the model, as well as their covariance matrix and the value of the restricted log-likelihood. We suggest a variable selection strategy for the linear mixed-effects model.
Keywords:Hierarchical linear models  Hierarchical ordering  Random coefficient models  Variable selection  Well-formulated models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号