首页 | 本学科首页   官方微博 | 高级检索  
     


Frailty Models for Arbitrarily Censored and Truncated Data
Authors:Catherine?Huber-Carol  mailto:catherine.huber@univ-paris.fr"   title="  catherine.huber@univ-paris.fr"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Ilia?Vonta
Affiliation:(1) CNRS 8145, MAP 5, UFR Biomédicale, Université René Descartes,U 472 INSERM, 45, rue des Saints-Pères, Paris,Cedex 06, France, 75 270;(2) Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, Nicosia, Cyprus, CY-1678
Abstract:
In this paper, we propose a frailty model for statistical inference in the case where we are faced with arbitrarily censored and truncated data. Our results extend those of Alioum and Commenges (1996), who developed a method of fitting a proportional hazards model to data of this kind. We discuss the identifiability of the regression coefficients involved in the model which are the parameters of interest, as well as the identifiability of the baseline cumulative hazard function of the model which plays the role of the infinite dimensional nuisance parameter. We illustrate our method with the use of simulated data as well as with a set of real data on transfusion-related AIDS.
Keywords:censored data  frailty models  gamma frailty  inverse gaussian frailty  transformation models  truncated data  nonparametric maximum likelihood estimation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号