首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic convergence of dimension reduction based boosting in classification
Authors:Junlong Zhao
Affiliation:School of Mathematics and System Science, Beihang University, LMIB of the Ministry of Education, China
Abstract:In high dimensional classification problem, two stage method, reducing the dimension of predictor first and then applying the classification method, is a natural solution and has been widely used in many fields. The consistency of the two stage method is an important issue, since errors induced by dimension reduction method inevitably have impacts on the following classification method. As an effective method for classification problem, boosting has been widely used in practice. In this paper, we study the consistency of two stage method–dimension reduction based boosting algorithm (briefly DRB) for classification problem. Theoretical results show that Lipschitz condition on the base learner is required to guarantee the consistency of DRB. This theoretical findings provide useful guideline for application.
Keywords:Dimension reduction   Boosting   Classification   Consistency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号