首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric Bayes factors based on empirical likelihood ratios
Authors:Albert Vexler  Wei DengGregory E. Wilding
Affiliation:Department of Biostatistics, The State University of New York at Buffalo, Buffalo, NY 14214, USA
Abstract:
Bayes methodology provides posterior distribution functions based on parametric likelihoods adjusted for prior distributions. A distribution-free alternative to the parametric likelihood is use of empirical likelihood (EL) techniques, well known in the context of nonparametric testing of statistical hypotheses. Empirical likelihoods have been shown to exhibit many of the properties of conventional parametric likelihoods. In this paper, we propose and examine Bayes factors (BF) methods that are derived via the EL ratio approach. Following Kass and Wasserman (1995), we consider Bayes factors type decision rules in the context of standard statistical testing techniques. We show that the asymptotic properties of the proposed procedure are similar to the classical BF's asymptotic operating characteristics. Although we focus on hypothesis testing, the proposed approach also yields confidence interval estimators of unknown parameters. Monte Carlo simulations were conducted to evaluate the theoretical results as well as to demonstrate the power of the proposed test.
Keywords:Bayes factor   Empirical likelihood   Likelihood ratio   Nonparametric testing   Type I error
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号