首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical matching and uncertainty analysis in combining household income and expenditure data
Authors:Pier Luigi Conti  Daniela Marella  Andrea Neri
Affiliation:1.Dipartimento di Scienze Statistiche,Sapienza Università di Roma,Rome,Italy;2.Dipartimento di Scienze della Formazione,Università Roma TRE,Rome,Italy;3.Banca d’Italia,Rome,Italy
Abstract:Among the goals of statistical matching, a very important one is the estimation of the joint distribution of variables not jointly observed in a sample survey but separately available from independent sample surveys. The absence of joint information on the variables of interest leads to uncertainty about the data generating model since the available sample information is unable to discriminate among a set of plausible joint distributions. In the present paper a short review of the concept of uncertainty in statistical matching under logical constraints, as well as how to measure uncertainty for continuous variables is presented. The notion of matching error is related to an appropriate measure of uncertainty and a criterion of selecting matching variables by choosing the variables minimizing such an uncertainty measure is introduced. Finally, a method to choose a plausible joint distribution for the variables of interest via iterative proportional fitting algorithm is described. The proposed methodology is then applied to household income and expenditure data when extra sample information regarding the average propensity to consume is available. This leads to a reconstructed complete dataset where each record includes measures on income and expenditure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号