(1) Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7420, USA
Abstract:
In biomedical studies, interest often focuses on the relationship between patients characteristics or some risk factors and both quality of life and survival time of subjects under study. In this paper, we propose a simultaneous modelling of both quality of life and survival time using the observed covariates. Moreover, random effects are introduced into the simultaneous models to account for dependence between quality of life and survival time due to unobserved factors. EM algorithms are used to derive the point estimates for the parameters in the proposed model and profile likelihood function is used to estimate their variances. The asymptotic properties are established for our proposed estimators. Finally, simulation studies are conducted to examine the finite-sample properties of the proposed estimators and a liver transplantation data set is analyzed to illustrate our approaches.