首页 | 本学科首页   官方微博 | 高级检索  
     


Using Analysis of Variance and Factor Analysis for the Reduction of High Dimensional Variation in Time Series of Energy Consumption
Authors:Carsten Schneider   Gerhard Arminger  Alexandra Schwarz
Affiliation:(1) Fachbereich B—Wirtschaftsstatistik, Bergische Universit?t Wuppertal, 42097 Wuppertal, Germany
Abstract:Summary: In this paper the complexity of high dimensional data with cyclical variation is reduced using analysis of variance and factor analysis. It is shown that the prediction of a small number of main cyclical factors is more useful than forecasting all the time-points separately as it is usually done by seasonal time series models. To give an example for this approach we analyze the electricity demand per quarter of an hour of industrial customers in Germany. The necessity of such predictions results from the liberalization of the German electricity market in 1998 due to legal requirements of the EC in 1996.
Keywords:Cyclical structure  hierarchical analysis of variance  factor analysis  liberalized energy market
本文献已被 SpringerLink 等数据库收录!
相似文献(共20条):
[1]、H. van der Hoeven,A. J. Hundepool.A Method for Seasonally Adjusting Time Series With Variation in the Seasonal Amplitude[J].商业与经济统计学杂志,2013,31(4):455-471.
[2]、唐功爽.时间序列分析在经济预测中的应用[J].统计与信息论坛,2005,20(6):90-94.
[3]、肖明.从方差分析看影响“访问时间”的因素[J].统计与信息论坛,2001,16(3):22-26.
[4]、徐秋艳,李秉龙.基于AIDS模型的中国农村居民消费结构分析[J].统计与信息论坛,2015(1):71-75.
[5]、A Test for Multivariate Analysis of Variance in High Dimension[J].统计学通讯:理论与方法
[6]、Jack H. W. Penm,Jammie H. Penm,R. D. Terrell.Using the Bootstrap as an Aid in Choosing the Approximate Representation for Vector Time Series[J].商业与经济统计学杂志,2013,31(2):213-219.
[7]、刘颖,贾彦东.中国GDP数据周期性的时间序列分析——基于制度及其变迁的一个解释[J].统计与信息论坛,2005,20(1):46-50.
[8]、Heung Wong,Wai Cheung Ip,Jian Yan Long.Bayesian Time Series Analysis of Structural Changes in Level and Trend[J].统计学通讯:理论与方法,2013,42(21):3949-3964.
[9]、张波,方国斌.高维面板数据降维与变量选择方法研究[J].统计与信息论坛,2012,27(6):21-28.
[10]、孙学英.中国能源消费地区差异的特征分析[J].统计与信息论坛,2011,26(4):52-55.
[11]、中国能源效率和能源消费的倾向性研究[J].统计与信息论坛
[12]、方国斌,马慧敏,宋国君.中国交通运输能源效率及其影响因素分析——基于三阶段DEA和GWR方法[J].统计与信息论坛,2016(11):59-67.
[13]、张颖,杨兰英.时间数列分析中的加法模型与乘法模型[J].统计与信息论坛,2005,20(4):45-47.
[14]、Michael H. Neumann.On Robustness of Model-Based Bootstrap Schemes in Nonparametric Time Series Analysis[J].Statistics,2013,47(1):33-63.
[15]、行智国.农村居民消费:当前经济增长的重点[J].统计与信息论坛,2002,17(4):24-29.
[16]、陈光慧,刘建平.基于时间序列分析方法的连续性抽样调查研究[J].统计与信息论坛,2008,23(3):15-18.
[17]、张咪咪.中国农村居民生活间接能源消耗与碳排放分析[J].统计教育,2010(7):35-40.
[18]、东方社奇,杨瑞霞.中国产业结构变动与能源消费关系研究[J].统计与信息论坛,2012(2):30-35.
[19]、Robin Thompson,Brian Cullis,Alison Smith,Arthur Gilmour.A Sparse Implementation of the Average Information Algorithm for Factor Analytic and Reduced Rank Variance Models[J].Australian & New Zealand Journal of Statistics,2003,45(4):445-459.
[20]、Tony F. Chan,Gene H. Golub,Randall J. Leveque.Algorithms for Computing the Sample Variance: Analysis and Recommendations[J].The American statistician,2013,67(3):242-247.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号