首页 | 本学科首页   官方微博 | 高级检索  
     


Testing the Goodness of Fit of Parametric Regression Models with Random Toeplitz Forms
Authors:AXEL MUNK
Abstract:ABSTRACT: We introduce a class of Toeplitz‐band matrices for simple goodness of fit tests for parametric regression models. For a given length r of the band matrix the asymptotic optimal solution is derived. Asymptotic normality of the corresponding test statistic is established under a fixed and random design assumption as well as for linear and non‐linear models, respectively. This allows testing at any parametric assumption as well as the computation of confidence intervals for a quadratic measure of discrepancy between the parametric model and the true signal g;. Furthermore, the connection between testing the parametric goodness of fit and estimating the error variance is highlighted. As a by‐product we obtain a much simpler proof of a result of 34 ) concerning the optimality of an estimator for the variance. Our results unify and generalize recent results by 9 ) and 15 , 16 ) in several directions. Extensions to multivariate predictors and unbounded signals are discussed. A simulation study shows that a simple jacknife correction of the proposed test statistics leads to reasonable finite sample approximations.
Keywords:difference estimator  goodness of fit  jacknife  L2‐distance  model testing  non‐linear least squares estimation  precise hypotheses  random design  Toeplitz matrice  triangular array
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号