首页 | 本学科首页   官方微博 | 高级检索  
     


Bootstrap bias corrections for ensemble methods
Authors:Giles Hooker  Lucas Mentch
Affiliation:1.Cornell University,Ithaca,USA;2.University of Pittsburgh,Pittsburgh,USA
Abstract:This paper examines the use of a residual bootstrap for bias correction in machine learning regression methods. Accounting for bias is an important obstacle in recent efforts to develop statistical inference for machine learning. We demonstrate empirically that the proposed bootstrap bias correction can lead to substantial improvements in both bias and predictive accuracy. In the context of ensembles of trees, we show that this correction can be approximated at only double the cost of training the original ensemble. Our method is shown to improve test set accuracy over random forests by up to 70% on example problems from the UCI repository.
Keywords:
本文献已被 SpringerLink 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号