首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive Estimation Using Weighted Least Squares
Authors:Thomas W. O'Gorman
Affiliation:Division of Statistics, Dept of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
Abstract:This paper proposes an adaptive estimator that is more precise than the ordinary least squares estimator if the distribution of random errors is skewed or has long tails. The adaptive estimates are computed using a weighted least squares approach with weights based on the lengths of the tails of the distribution of residuals. Smaller weights are assigned to those observations that have residuals in the tails of long-tailed distributions and larger weights are assigned to observations having residuals in the tails of short-tailed distributions. Monte Carlo methods are used to compare the performance of the proposed estimator and the performance of the ordinary least squares estimator. The estimates that were studied in this simulation include the difference between the means of two populations, the mean of a symmetric distribution, and the slope of a regression line. The adaptive estimators are shown to have lower mean squared errors than those for the ordinary least squares estimators for short-tailed, long-tailed, and skewed distributions, provided the sample size is at least 20. The ordinary least squares estimator has slightly lower mean squared error for normally distributed errors. The adaptive estimator is recommended for general use for studies having sample sizes of at least 20 observations unless the random errors are known to be normally distributed.
Keywords:adaptive methods    robust methods.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号