首页 | 本学科首页   官方微博 | 高级检索  
     


On the Normal Inverse Gaussian Stochastic Volatility Model
Abstract:
In this article, the normal inverse Gaussian stochastic volatility model of Barndorff-Nielsen is extended. The resulting model has a more flexible lag structure than the original one. In addition, the second-and fourth-order moments, important properties of a volatility model, are derived. The model can be considered either as a generalized autoregressive conditional heteroscedasticity model with nonnormal errors or as a stochastic volatility model with an inverse Gaussian distributed conditional variance. A simulation study is made to investigate the performance of the maximum likelihood estimator of the model. Finally, the model is applied to stock returns and exchange-rate movements. Its fit to two stylized facts and its forecasting performance is compared with two other volatility models.
Keywords:Conditional heteroscedasticity  Normal inverse Gaussian distribution
相似文献(共20条):
[1]、Ole E. Barndorff-Nielsen.Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling[J].Scandinavian Journal of Statistics,1997,24(1):1-13.
[2]、Asma, Graja,Afif, Masmoudi.Implicit Estimation for the Stochastic Volatility Model[J].统计学通讯:理论与方法,2014,43(6):1061-1076.
[3]、Yong Li,Zhong-Xin Ni.A Stochastic Simulation Approach to Model Selection for Stochastic Volatility Models[J].统计学通讯:模拟与计算,2013,42(7):1043-1056.
[4]、Ben Tims ,Ronald Mahieu.A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates[J].Econometric Reviews,2006,25(2):409-424.
[5]、Emilio Gómez-Déniz,Ramesh C. Gupta.Poisson-mixed Inverse Gaussian Regression Model and Its Application[J].统计学通讯:模拟与计算,2016,45(8):2767-2781.
[6]、Georgios Tsiotas.On the use of non-linear transformations in Stochastic Volatility models[J].Statistical Methods and Applications,2009,18(4):555-583.
[7]、John L. Knight,Stephen E. Satchell,& Jun Yu.Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method[J].Australian & New Zealand Journal of Statistics,2002,44(3):319-335.
[8]、Andrew C. Harvey,Neil Shephard.Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns[J].商业与经济统计学杂志,2013,31(4):429-434.
[9]、Jun Yu ,Renate Meyer.Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison[J].Econometric Reviews,2006,25(2):361-384.
[10]、Manabu Asai ,Michael McAleer.Asymmetric Multivariate Stochastic Volatility[J].Econometric Reviews,2006,25(2):453-473.
[11]、周宏山,冀云.非对称随机波动模型在中国股市的应用[J].统计与信息论坛,2007,22(4):70-73.
[12]、白仲林,隋雯霞,刘传文.混合贝塔分布随机波动模型及其贝叶斯分析[J].统计与信息论坛,2013,28(4):3-9.
[13]、Esfandiar Maasoumi ,Michael McAleer.Multivariate Stochastic Volatility: An Overview[J].Econometric Reviews,2006,25(2):139-144.
[14]、Caroline Bernard-Michel,Laurent Gardes,Stéphane Girard.Gaussian Regularized Sliced Inverse Regression[J].Statistics and Computing,2009,19(1):85-98.
[15]、Eric Jacquier,Nicholas G. Polson,Peter E. Rossi.Bayesian Analysis of Stochastic Volatility Models[J].商业与经济统计学杂志,2013,31(4):371-389.
[16]、Manabu Asai ,Michael McAleer,Jun Yu.Multivariate Stochastic Volatility: A Review[J].Econometric Reviews,2006,25(2):145-175.
[17]、李春林,李冬连.随机波动HJM框架下信用利差模型及实证研究[J].统计与信息论坛,2011(9):9-15.
[18]、Alexander Philipov ,Mark E. Glickman.Factor Multivariate Stochastic Volatility via Wishart Processes[J].Econometric Reviews,2006,25(2):311-334.
[19]、Zeynep I. Kalaylıoğlu,Sujit K. Ghosh.Bayesian unit-root tests for Stochastic Volatility models[J].Statistical Methodology,2009,6(2):189-201.
[20]、David Chan,Chris Kirby.Multivariate Stochastic Volatility Models with Correlated Errors[J].Econometric Reviews,2013,32(2-3):245-274.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号