首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of Dynamic Bivariate Mixture Models
Abstract:This note compares a Bayesian Markov chain Monte Carlo approach implemented by Watanabe with a maximum likelihood ML approach based on an efficient importance sampling procedure to estimate dynamic bivariate mixture models. In these models, stock price volatility and trading volume are jointly directed by the unobservable number of price-relevant information arrivals, which is specified as a serially correlated random variable. It is shown that the efficient importance sampling technique is extremely accurate and that it produces results that differ significantly from those reported by Watanabe.
Keywords:Bayesian posterior means  Efficient importance sampling  Latent variable  Markov chain monte carlo  Maximum likelihood
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号