Abstract: | This article modifies and extends the test against nonstationary stochastic seasonality proposed by Canova and Hansen. A simplified form of the test statistic in which the nonparametric correction for serial correlation is based on estimates of the spectrum at the seasonal frequencies is considered and shown to have the same asymptotic distribution as the original formulation. Under the null hypothesis, the distribution of the seasonality test statistics is not affected by the inclusion of trends, even when modified to allow for structural breaks, or by the inclusion of regressors with nonseasonal unit roots. A parametric version of the test is proposed, and its performance is compared with that of the nonparametric test using Monte Carlo experiments. A test that allows for breaks in the seasonal pattern is then derived. It is shown that its asymptotic distribution is independent of the break point, and its use is illustrated with a series on U.K. marriages. A general test against any form of permanent seasonality, deterministic or stochastic, is suggested and compared with a Wald test for the significance of fixed seasonal dummies. It is noted that tests constructed in a similar way can be used to detect trading-day effects. An appealing feature of the proposed test statistics is that under the null hypothesis, they all have asymptotic distributions belonging to the Cramér–von Mises family. |