首页 | 本学科首页   官方微博 | 高级检索  
     


New two-stage sampling designs based on neoteric ranked set sampling
Authors:Cesar Augusto Taconeli  Angelo da Silva Cabral
Affiliation:Department of Statistics, Federal University of Paraná, Curitiba, Brazil
Abstract:Neoteric ranked set sampling (NRSS) is a recently developed sampling plan, derived from the well-known ranked set sampling (RSS) scheme. It has already been proved that NRSS provides more efficient estimators for population mean and variance compared to RSS and other sampling designs based on ranked sets. In this work, we propose and evaluate the performance of some two-stage sampling designs based on NRSS. Five different sampling schemes are proposed. Through an extensive Monte Carlo simulation study, we verified that all proposed sampling designs outperform RSS, NRSS, and the original double RSS design, producing estimators for the population mean with a lower mean square error. Furthermore, as with NRSS, two-stage NRSS estimators present some bias for asymmetric distributions. We complement the study with a discussion on the relative performance of the proposed estimators. Moreover, an additional simulation based on data of the diameter and height of pine trees is presented.
Keywords:Statistical efficiency  Monte Carlo simulation  double ranked set sampling  imperfect ranking  height of trees
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号