首页 | 本学科首页   官方微博 | 高级检索  
     


Exact principal component influence measures applied to the analysis of spectroscopic data on rice
Authors:B. J. A. Mertens
Affiliation:Trinity College Dublin, Republic of Ireland
Abstract:Exact influence measures are applied in the evaluation of a principal component decomposition for high dimensional data. Some data used for classifying samples of rice from their near infra-red transmission profiles, following a preliminary principal component analysis, are examined in detail. A normalization of eigenvalue influence statistics is proposed which ensures that measures reflect the relative orientations of observations, rather than their overall Euclidean distance from the sample mean. Thus, the analyst obtains more information from an analysis of eigenvalues than from approximate approaches to eigenvalue influence. This is particularly important for high dimensional data where a complete investigation of eigenvector perturbations may be cumbersome. The results are used to suggest a new class of influence measures based on ratios of Euclidean distances in orthogonal spaces.
Keywords:Chemometrics    Classification    Influence    Principal components    Spectroscopy
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号