首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian marginal inference via candidate's formula
Authors:Hsiao  Chuhsing Kate  Huang   Su-Yun  Chang   Ching-Wei
Affiliation:(1) Division of Biostatistics, Institute of Epidemiology, National Taiwan University, Taipei, 100, Taiwan, R.O.C.;(2) Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan, R.O.C.;(3) Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taipei, 115, Taiwan, R.O.C.
Abstract:Computing marginal probabilities is an important and fundamental issue in Bayesian inference. We present a simple method which arises from a likelihood identity for computation. The likelihood identity, called Candidate's formula, sets the marginal probability as a ratio of the prior likelihood to the posterior density. Based on Markov chain Monte Carlo output simulated from the posterior distribution, a nonparametric kernel estimate is used to estimate the posterior density contained in that ratio. This derived nonparametric Candidate's estimate requires only one evaluation of the posterior density estimate at a point. The optimal point for such evaluation can be chosen to minimize the expected mean square relative error. The results show that the best point is not necessarily the posterior mode, but rather a point compromising between high density and low Hessian. For high dimensional problems, we introduce a variance reduction approach to ease the tension caused by data sparseness. A simulation study is presented.
Keywords:Bayes factor  Gibbs sampler  kernel density estimation  marginal likelihood  marginal likelihood identity  Markov chain Monte Carlo  Metropolis-Hasting algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号