首页 | 本学科首页   官方微博 | 高级检索  
     

基于分形的快速最大熵红外图像特征检测
引用本文:谭晓静. 基于分形的快速最大熵红外图像特征检测[J]. 重庆文理学院学报, 2013, 32(5): 119-123
作者姓名:谭晓静
作者单位:闽南理工学院电子与电气工程系,福建石狮,362700
摘    要:文章针对红外图像目标检测问题,提出一种基于分形的快速最大熵的红外图像特征检测算法.该算法利用DBC方法计算分维数,根据人造物和自然背景分形维差异,确定目标区域;最后,通过二维最大熵原则确定最佳阈值,实现对单目标或者多目标图像分割.该算法能够较好实现红外图像特征检测,有效抑制背景和噪声.

关 键 词:DBC  分形维数  二维最大熵  红外图像  特征检测

Fast maximum entropy for characteristics detection of infrared image based on fractal theory
TAN Xiaojing. Fast maximum entropy for characteristics detection of infrared image based on fractal theory[J]. Journal of Chongqing University of Arts and Sciences, 2013, 32(5): 119-123
Authors:TAN Xiaojing
Affiliation:Department of Electrical and Electronic Engineering, Minnan University of Science and Technology, Shishi Fujian 362700, China
Abstract:For the problem of target detection in infrared image, a fast maximum entropy for characteristics detection of infrared image based on fractal theory was proposed. The algorithm uses DBC methods to calculate fractal dimension, gets target areas based on artifacts and natural background difference fractal dimension. Finally, it determines the best threshold for single target or a target image segmentation by two-dimension maximum entropy principle. The algorithm can better achieve infrared image feature detection, and effectively suppress background and noise.
Keywords:DBC   fractal dimension   two-dimension maximum entropy   infrared image   feature detection
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆文理学院学报》浏览原始摘要信息
点击此处可从《重庆文理学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号