首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络的滚动轴承故障诊断
引用本文:邓星,胡腾飞,李江华. 神经网络的滚动轴承故障诊断[J]. 重庆文理学院学报, 2013, 32(3): 44-47
作者姓名:邓星  胡腾飞  李江华
作者单位:重庆理工大学汽车学院,重庆 巴南,400054
摘    要:文章通过旋转机械故障实验平台,采集旋转机械故障实验台轴承的3种工作状态分别是轴承正常、轴承内圈裂缝、轴承外圈裂缝的振动加速度信号.对信号进行零均值化处理后,选择频率成分幅值较大的频率进行信号重组,提取其时域量纲特征值,利用神经网络进行故障类型的识别;通过实验,取得了很好的诊断结果.

关 键 词:轴承  振动  信号重组  神经网络  故障诊断

Fault diagnosis of bearing based on neural networks
DENG Xing,HU Tengfei and LI Jianghua. Fault diagnosis of bearing based on neural networks[J]. Journal of Chongqing University of Arts and Sciences, 2013, 32(3): 44-47
Authors:DENG Xing  HU Tengfei  LI Jianghua
Abstract:Through the rotating machinery fault experimental platform, the vibration signals of the rotating machinery fault experimental platform under three conditions such as bearing normal, bearing inner ring cracks and bearing outer ring cracks were collected. After the signal was zero-mean processed; the signals with the main frequency band of the vibration signals were restructured; the dimensionless time domain as characteristic value was extracted; the fault types by neural networks were recognized. A good fault diagnosis result was obtained in experiments.
Keywords:bearing   vibration   signal restructuring   neural networks   fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆文理学院学报》浏览原始摘要信息
点击此处可从《重庆文理学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号