首页 | 本学科首页   官方微博 | 高级检索  
     


Alternative Markov Properties for Chain Graphs
Authors:Steen A. Andersson,David Madigan,&   Michael D. Perlman
Affiliation:Indiana University,;University of Washington
Abstract:Graphical Markov models use graphs to represent possible dependences among statistical variables. Lauritzen, Wermuth, and Frydenberg (LWF) introduced a Markov property for chain graphs (CG): graphs that can be used to represent both structural and associative dependences simultaneously and that include both undirected graphs (UG) and acyclic directed graphs (ADG) as special cases. Here an alternative Markov property (AMP) for CGs is introduced and shown to be the Markov property satisfied by a block-recursive linear system with multivariate normal errors. This model can be decomposed into a collection of conditional normal models, each of which combines the features of multivariate linear regression models and covariance selection models, facilitating the estimation of its parameters. In the general case, necessary and sufficient conditions are given for the equivalence of the LWF and AMP Markov properties of a CG, for the AMP Markov equivalence of two CGs, for the AMP Markov equivalence of a CG to some ADG or decomposable UG, and for other equivalences. For CGs, in some ways the AMP property is a more direct extension of the ADG Markov property than is the LWF property.
Keywords:block-recursive normal linear system    chain graph    graphical Markov model    Markov equivalence    Markov properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号