Abstract: | ABSTRACT We examine empirical relevance of three alternative asymptotic approximations to the distribution of instrumental variables estimators by Monte Carlo experiments. We find that conventional asymptotics provides a reasonable approximation to the actual distribution of instrumental variables estimators when the sample size is reasonably large. For most sample sizes, we find Bekker[11] Bekker, P. A. 1994. Alternative Approximations to the Distributions of Instrumental Variable Estimators. Econometrica, 62: 657–681. [Crossref], [Web of Science ®] , [Google Scholar] asymptotics provides reasonably good approximation even when the first stage R 2 is very small. We conclude that reporting Bekker[11] Bekker, P. A. 1994. Alternative Approximations to the Distributions of Instrumental Variable Estimators. Econometrica, 62: 657–681. [Crossref], [Web of Science ®] , [Google Scholar] confidence interval would suffice for most microeconometric (cross-sectional) applications, and the comparative advantage of Staiger and Stock[5] Staiger, D. and Stock, J. H. 1997. Instrumental Variables Regression with Weak Instruments. Econometrica, 65: 556–586. [Crossref], [Web of Science ®] , [Google Scholar] asymptotic approximation is in applications with sample sizes typical in macroeconometric (time series) applications. |