首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯谱聚类的风险商户聚类分析
引用本文:黄丹阳等. 基于高斯谱聚类的风险商户聚类分析[J]. 统计研究, 2021, 38(6): 145-160. DOI: 10.19343/j.cnki.11-1302/c.2021.06.011
作者姓名:黄丹阳等
摘    要:随着电子支付的普及,市场涌现出越来越多的第三方支付平台,而当前关于第三方支付平台商户风险方面的研究相对较少。故本文提出基于高斯谱聚类的风险商户聚类方法,首先使用高斯混合模型构建交易-交易群体的双模网络;其次借助网络中信息传递的思想构建“商户-交易群体网络”的双模网络;再次使用双模网络聚类方法中的谱聚类方法同时对网络中的两类节点聚类,对商户节点聚类的结果可区分出不同风险级别的商户,对交易群体节点聚类的结果可以进一步描述风险商户的交易特征;最后本文分别在模拟数据和某第方支付平台的实际数据中验证了模型的有效性。实验结果表明,本文提出的方法不仅可以准确地区分出不同风险级别的商户群体,而且能总结归纳风险商户的交易特征,为风险商户的监管提供参考。

关 键 词:高斯混合模型  谱聚类  风险商户  聚类分析  

Clustering of Risk Merchants Based on Gaussian Spectral Clustering
Huang Danyang et al. Clustering of Risk Merchants Based on Gaussian Spectral Clustering[J]. Statistical Research, 2021, 38(6): 145-160. DOI: 10.19343/j.cnki.11-1302/c.2021.06.011
Authors:Huang Danyang et al
Abstract:With the popularity of electronic payment, more and more third-party payment platforms have emerged, while the research on the risk merchants of third-party payment platforms is relatively deficient. Therefore, we propose a risk merchant clustering method based on Gaussian spectral clustering. First, we use the Gaussian mixture model to build a transaction-trading group bipartite network. Second, we use the idea of information transmission in the network to build a merchant-trading group bipartite network. Third, we take advantage of spectral clustering in the bipartite network method to cluster two kinds of nodes at the same time. The result of merchant node clustering can distinguish merchants’ risk levels, and that of trading-group node clustering can further describe the transaction characteristics of risk merchants. At last, we validate the model in the simulated data and the actual data of a third-party payment platform. The experiment results show that the proposed method can not only accurately distinguish the merchants with different risk levels, but also summarize the transaction characteristics of the risk merchants and provide a reference for the supervision of the risk merchants.
Keywords:
点击此处可从《统计研究》浏览原始摘要信息
点击此处可从《统计研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号