首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of different computational implementations on fitting generalized linear mixed-effects models for repeated count measures
Abstract:ABSTRACT

In modelling repeated count outcomes, generalized linear mixed-effects models are commonly used to account for within-cluster correlations. However, inconsistent results are frequently generated by various statistical R packages and SAS procedures, especially in case of a moderate or strong within-cluster correlation or overdispersion. We investigated the underlying numerical approaches and statistical theories on which these packages and procedures are built. We then compared the performance of these statistical packages and procedures by simulating both Poisson-distributed and overdispersed count data. The SAS NLMIXED procedure outperformed the others procedures in all settings.
Keywords:Repeated count data  overdispersion  integral approximation  linearization  R  SAS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号