Abstract: | ABSTRACTIn modelling repeated count outcomes, generalized linear mixed-effects models are commonly used to account for within-cluster correlations. However, inconsistent results are frequently generated by various statistical R packages and SAS procedures, especially in case of a moderate or strong within-cluster correlation or overdispersion. We investigated the underlying numerical approaches and statistical theories on which these packages and procedures are built. We then compared the performance of these statistical packages and procedures by simulating both Poisson-distributed and overdispersed count data. The SAS NLMIXED procedure outperformed the others procedures in all settings. |