首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative study of smoothing procedures for ordered categorical data
Abstract:Methods for estimating probabilities on sample spaces for ordered-categorical variables are surveyed. The methods all involve smoothing the relative frequencies in manners which recognise the ordering among categories. Approaches of this type include convex smoothing, weighting-function and kernel-based methods, near neighbour methods, Bayes-based methods and penalized minimum-distance methods. The relationships among the methods are brought out, application is made to a medical example and a simulation study is reported which compares the methods on univariate and bivariate examples. Links with smoothing procedures in other contexts are indicated.
Keywords:Ordered-categories  density estimation  convex smoothing  kernel methods  minimum penalized distance  near neighbour methods  crossvalidation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号