首页 | 本学科首页   官方微博 | 高级检索  
     


Forward and backward stepping in variable selection
Abstract:For stepwise regression and discriminant analysis the parameters F in and F out govern the inclusion and deletion of variables. The candidate variable with the biggest F—ratio is included if this exceeds F inthe included variable with the smallest F—ratio is deleted if this is less than F in If F inF out; then return to a previous subset size implies improvement in the criterion measure. This result also holds for a generalization, stepwise multivariate analysis, which includes stepwise regression and discriminant analysis as special cases

Eliminations do not occur if forward regression and backward elimination yield the same sequence of subsets. Conversely, there is a more liberal stepping rule which always eliminates if the two sequences differ.
Keywords:Regression  discriminant analysis  stepwise regression  stepwise discriminant analysis  variable selection  multivariate analysis
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号