Abstract: | ABSTRACTThis article addresses the problem of parameter estimation of the logistic regression model under subspace information via linear shrinkage, pretest, and shrinkage pretest estimators along with the traditional unrestricted maximum likelihood estimator and restricted estimator. We developed an asymptotic theory for the linear shrinkage and pretest estimators and compared their relative performance using the notion of asymptotic distributional bias and asymptotic quadratic risk. The analytical results demonstrated that the proposed estimation strategies outperformed the classical estimation strategies in a meaningful parameter space. Detailed Monte-Carlo simulation studies were conducted for different combinations and the performance of each estimation method was evaluated in terms of simulated relative efficiency. The results of the simulation study were in strong agreement with the asymptotic analytical findings. Two real-data examples are also given to appraise the performance of the estimators. |