Abstract: | ABSTRACTIn many real-world applications, the traditional theory of analysis of covariance (ANCOVA) leads to inadequate and unreliable results because of violation of the response variable observations from the essential Gaussian assumption that may be due to the heterogeneity of population, the presence of outlier or both of them. In this paper, we develop a Gaussian mixture ANCOVA model for modelling heterogeneous populations with a finite number of subpopulation. We provide the maximum likelihood estimates of the model parameters via an EM algorithm. We also drive the adjusted effects estimators for treatments and covariates. The Fisher information matrix of the model and asymptotic confidence intervals for the parameter are also discussed. We performed a simulation study to assess the performance of the proposed model. A real-world example is also worked out to explained the methodology. |