Abstract: | Variance estimation under systematic sampling with probability proportional to size is known to be a difficult problem. We attempt to tackle this problem by the bootstrap resampling method. It is shown that the usual way to bootstrap fails to give satisfactory variance estimates. As a remedy, we propose a double bootstrap method which is based on certain working models and involves two levels of resampling. Unlike existing methods which deal exclusively with the Horvitz–Thompson estimator, the double bootstrap method can be used to estimate the variance of any statistic. We illustrate this within the context of both mean and median estimation. Empirical results based on five natural populations are encouraging. |