首页 | 本学科首页   官方微博 | 高级检索  
     


A quasi-Bayesian model averaging approach for conditional quantile models
Abstract:The value at risk (VaR) is a risk measure that is widely used by financial institutions to allocate risk. VaR forecast estimation involves the evaluation of conditional quantiles based on the currently available information. Recent advances in VaR evaluation incorporate conditional variance into the quantile estimation, which yields the conditional autoregressive VaR (CAViaR) models. However, uncertainty with regard to model selection in CAViaR model estimators raises the issue of identifying the better quantile predictor via averaging. In this study, we propose a quasi-Bayesian model averaging method that generates combinations of conditional VaR estimators based on single CAViaR models. This approach provides us a basis for comparing single CAViaR models against averaged ones for their ability to forecast VaR. We illustrate this method using simulated and financial daily return data series. The results demonstrate significant findings with regard to the use of averaged conditional VaR estimates when forecasting quantile risk.
Keywords:value at risk  CAViaR models  Metropolis–Hastings  MCMC  quasi-Bayesian model averaging  forecasting evaluation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号