首页 | 本学科首页   官方微博 | 高级检索  
     


Residual life estimation based on bivariate non-stationary gamma degradation process
Abstract:Due to the growing importance in maintenance scheduling, the issue of residual life (RL) estimation for some high reliable products based on degradation data has been studied quite extensively. However, most of the existing work only deals with one-dimensional degradation data, which may not be realistic in some cases. Here, an adaptive method of RL estimation is developed based on two-dimensional degradation data. It is assumed that a product has two performance characteristics (PCs) and that the degradation of each PC over time is governed by a non-stationary gamma degradation process. From a practical consideration, it is further assumed that these two PCs are dependent and that their dependency can be characterized by a copula function. As the likelihood function in such a situation is complicated and computationally quite intensive, a two-stage method is used to estimate the unknown parameters of the model. Once new degradation information of the product being monitored becomes available, random effects are first updated by using the Bayesian method. Following that, the RL at current time is estimated accordingly. As the degradation data information accumulates, the RL can be re-estimated in an adaptive manner. Finally, a numerical example about fatigue cracks is presented in order to illustrate the proposed model and the developed inferential method.
Keywords:residual life  performance characteristics  bivariate gamma process  copula function  two-stage method  degradation process
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号