首页 | 本学科首页   官方微博 | 高级检索  
     


Modern likelihood inference for the maximum/minimum of a bivariate normal vector
Abstract:ABSTRACT

We consider the use of modern likelihood asymptotics in the construction of confidence intervals for the parameter which determines the skewness of the distribution of the maximum/minimum of an exchangeable bivariate normal random vector. Simulation studies were conducted to investigate the accuracy of the proposed methods and to compare them to available alternatives. Accuracy is evaluated in terms of both coverage probability and expected length of the interval. We furthermore illustrate the suitability of our proposals by means of two data sets, consisting of, respectively, measurements taken on the brains of 10 mono-zygotic twins and measurements of mineral content of bones in the dominant and non-dominant arms for 25 elderly women.
Keywords:Bivariate normal distribution  higher order likelihood inference  modified likelihood root  skew-normal distribution
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号